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Abstract— Multimedia data transmission over wireless 
networks is challenging due lower bandwidth, delay 
composition, air interface and occurrence of burst errors. 
Packet loss caused by burst errors seriously limits the 
maximum achievable throughput of wireless networks. Burst 
errors are critical for Quality of Service (QoS) in terms of 
error detection, correction and retransmission of erroneous 
packets. Codecs for most of the multimedia traffic like voice, 
video transmissions are usually designed to conceal single 
error but not burst of packet error. To tailor efficient 
transmission schemes, it is essential to design a wireless error 
model and develop techniques that can provide insight into 
the behaviour of wireless transmissions. 
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I. INTRODUCTION 

Error modeling in communication channels is a popular 
methodology used for analyzing the channel characteristics, 
investigating the impact of errors, testing and evaluates the 
methods to improve the channel performance. 
Communication channels can be modeled mathematically 
for channels with memory and without memory. Discrete 
Memory less channels are the simplest type of channel for 
which the output of the channel at any given time depends 
only on the corresponding input. A channel is said to have 
memory, if each bit in the output sequence depends 
statistically on the corresponding input bit as well as on the 
past inputs, past outputs and future inputs. In digital 
wireless channels burst errors are common which might 
occur because of the non-stationary noise effect in the 
transmission channel or due to stroke of lightning. Burst 
errors are not independent; they tend to be spatially 
concentrated. If one of the symbols has an error, it is likely 
that the adjacent symbols could also be corrupted. 
Describing the statistical property of the underlying burst 
error sequence is termed as Burst error model. 

Error models can be classified either as descriptive or 
generative models. A descriptive model analyzes the 
statistical behavior of a channel for error sequence with 
reference to the historical events, which can be obtained 
from a real channel or a simulation process. Generative 
model specifies an algorithm or a methodology for 
generating the error patterns similar to the statistical error 

sequences. The algorithm is based on the mathematical 
calculations that can accurately predict the future outcomes 
[1]. The detailed characterization of the digital wireless 
channel is very difficult. Gilberts two state model has been 
successful in characterizing the burst error in digital 
wireless channels [2]. Gilbert model is based on finite-state 
binary symmetric channel with memory determined by 
Markov chains. The two state of the channel corresponds to 
the channel quality which is either “good” or “bad” are 
represented by 0 and 1 respectively [3]. Due to the 
underlying Markov nature of the state process, the 
occurrence of symbol for the channel with memory 
depends on the transition between the two states. The 
transition probability defines the probability of transition 
from one state to another state in a single step and termed 
as (0)P and (1)P respectively [4].   

 To counteract the burst error losses and improve the 
QoS of the communication channel, the concept of 
interleaving technique comes very handy. Interleaving is 
the technique of minimizing the burst errors by 
transforming them into independent errors. Uniformly 
randomizing the burst error to independent error helps in 
designing a simple Forward Error Correction codes (FEC). 
By re-ordering the symbols before transmitting them over a 
channel, the symbols are separated apart with reference to 
interleaving depth, resulting the same code word is not hit 
by the same burst. The receiver performs the inverse 
operation called deinterleaving. If the interleaving depth is 
large enough, error can be treated on the de-interleaver 
output as independent [5]. Comparing the symbol error 
rates for different burst error with interleaving against the 
traditional communication protocol highlights the 
advantages. 

The rest of the paper is structured as follows. Burst error 
and Waiting time definition is explained in section II. 
Section III presents error probabilities on Gilbert channel 
characteristics with standard formulas defining the 
transitional probability matrix. Principle of Interleaving is 
detailed in section IV. Section V details the effect of 
Interleaving on bursty channels. Finally the error rates are 
compared for communication channel with and without 
interleaving and presented though suitable charts in section 
VI and concluded. 
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II. DEFINITION OF BURST ERROR AND WAITING TIME 

Consider a sequence of symbol output by the Viterbi 
decoder of the form where the codeword ‘c’ represents 
correctly decoded symbol, codeword ‘e’ represents an error 
symbol  and ‘x’ may be either correct or incorrect symbol. 

 

 
Fig. 1  Burst Error and Waiting Time 

 
Suppose that there is no string of K-1 consecutive c’s in 

the sequence ‘xx----x’, then the string ‘exx----xe’ is called a 
burst error of length B. A string of c’s between the two 
burst is referred as a waiting time [6]. 

III. GILBERT MODEL 

Gilbert model is a first order markov chain model, which 
is mainly used to study the packet loss process in a 
communication network. We have considered the two state 
binary symmetric channel models with memory for our 
current study. Two state good ( )G  and bad ( )B are 

assumed in this model. In the good state error occur with 
very low probability ggp while in bad state errors occur 

with high probability bbp . The channel has the opportunity 

to change states. The transition from G B and 
B G have probabilities 1 ggp and 1 bbp respectively 

[7]. 

A. Two-State Gilbert Model 

Digital communication systems transmit information in 
the form of 0 and1 . Each symbol transmitted should pass 
through several stages and routes to reach the destination 
node. There is probability ( )P that the symbol transmitted 

will remain unchanged when received. We can say that the 
communication process is in state 0 when the transmitted 
symbol is unchanged and state1when the symbol has 
changed from its original value. 

Two states G and B are said to be accessible to each 

other if 0n
gbP  for value 0n   

B. Definitions 

G : good state with a null error probability ggp ,  

B : bad state with an error probability equal to bbp ,  
1 ggp : Probability to change from good to bad state, 

1 bbp : Probability to change from bad to good state. 

 
Fig. 2 Two State Gilbert Model 

Any state can communicates with itself since, by 
definition,  

 

 0
0 0| 1ggP P X G X G                               1  

To simulate bursty error behaviour ggp and bbp must be 

large. The transition matrix defines the general solution for 
linear dynamical systems. Two state gilberts model has the 
following state transition matrix form: 

 
1

1
gg gg

bb bb

p p
P

p p

 
   

                                       2  

 
Equation 2 is also called the one-step transition 

probability matrix. In the model, the occurrence of a 
symbol transmitted with or without error is modeled 
respectively by 1and 0 . 

Consider the example of a two-state model in which 
0.7ggp  and 0.4bbp  , then the one-step transition 

probability matrix is given by  
 

0.7 0.3

0.4 0.6
P

 
  
 

                                                3  

 
The one-step probability values for1 0.3ggp   

and1 0.6bbp  . Now if we want to calculate the 

probability that next four symbols transmitted remain the 
state 0 provided the current symbol is in state 0, then  

 

2 0.7 0.3 0.7 0.3
.

0.4 0.6 0.4 0.6
P

   
    
   

             4  

 

2 0.61 0.39

0.52 0.48
P

 
  
 

                                            5  

 
Similarly 4P can be calculated as   
 

 24 2 0.61 0.39 0.61 0.39
.

0.52 0.48 0.52 0.48
P P

   
     

   
          6  

 

4 0.5749 0.4215

0.5668 0.4332
P

 
  
 

                                    7  

 
Hence the desired probability for 4

ggP is 0.5749. 

Next observable state deals with the capability of 
determining the state transition from input to output while 
not knowing the initial state. The observational transition 
probability matrix for two state gilberts model is given by: 

 
( )(1 ) (1 )(1 )

(0)
(1 )(1 ) ( )(1 )

gg gg

bb bb

p G p G
P

p B p B

   
     

           8  
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( )( ) (1 )( )
(1)

(1 )( ) ( )(1 )
gg gg

bb bb

p G p G
P

p B p B

 
    

                             9  

The stationary state probability is the probability of 
being in various states as time gets large. Stationary state 
probability is considered in many applications since one is 
interested in long run behavior of the system. Now under 
the conditions 0 1 ggp  and1 1bbp  , the stationary state 

probabilities 0 and 1  of being in state G and 

B respectively can be defined as: 

0

(1 )

(1 ) (1 )
bb

gg bb

p

p p





                                           10  

 

1

(1 )

(1 ) (1 )
gg

gg bb

p

p p





                                              11  

 
Therefore steady state probability can be defined as  
 

 0 1,                                                                12  
 
The entries of  are called steady state probabilities. 
The average symbol error rate produced by the Gilberts 

channel is defined as: 
 

0 0 1 1p P P                                                           13  

 
Using equation 10 and 11, Equation 13 can be further 

simplified and defined as 
 

0 1(1 ) (1 )

(1 ) (1 )
gg bb

gg bb

P p P p
p

p p

  


                                       14  

 
Using Equation 14, the average symbol error rate can be 

derived as  
 

(1 )

(1 ) (1 )
bb

gg bb

p
p

p p




                                              15  

 
Next, the variance of the error symbol X is the average 

value of the square distance from the mean value. It 
represents how the random variable is distributed near the 
mean value. Small variance indicates that the random 
variable is distributed near the mean value while big 
variance indicates that the random variable is distributed far 
from the mean value. Standard equation of variance is 
given by 

 
2 2( )E X p                                                         16  

 
In the current context variance is defined as  
 

2 (1 )p p                                                            17  
 

The correlation will indicate a predictive relationship 
that can be exploited in practice. The correlation coefficient 
of two consecutive error symbols 1X and 2X is defined as: 

 

 1 2

2

( )( )E X p X p



 

                                        18  

 
Equation 18 can be further simplified and rewritten as 
 

1bb ggp p                                                          19  
 
Solving equations 15 and 19, we get the bad state 

probability as  
 

(1 )bbp p p                                                       20  

 
And the good state probability is derived as 
 

(1 )ggp p p                                                         21  

 
The transition probability matrix then becomes: 
 

1 (1 ) (1 )

(1 )(1 ) 1 (1 )(1 )

p p
P

p p

 
 

   
       

                      22  

 
The thn  step transition matrix may be obtained by 

multiplying the matrix P by itself n times.  

Referring to equation 7, it is evident that as n  , the 
desired probability converge towards a particular value. 
Also there seems to be a limiting probability that the 
communication process will be in any particular state after 
a long number of transitions and this value is independent 
of the initial state. 

IV. INTERLEAVING 

Interleaving is a periodic and reversible reordering of ‘L’ 
transmitted symbols. Interleaved symbols are 
correspondingly reordered by de-interleaving in the 
receiver. Interleaving is employed in the transmission 
system when it is desired to randomize the distribution of 
burst errors after reception. Bursts errors may occur 
because of the non-stationary noise effect in the 
transmission channel or due to stroke of lightning etc. If 
burst errors are separated by an interval long with respect to 
the interleaver period, then they can be distributed more 
evenly over time by the de-interleaver in the receiver. The 
distribution of errors effectively enables realistic modeling.  

Interleaving techniques can be broadly classified into 
periodic and pseudo-random. Periodic is the simple type of 
interleaving technique where data is divided into a 
sequence of equal length and using the same interleaving 
schema for all the sequences. Pseudo-random sequences are 
generated using specific algorithm where the interleaving 
sequence is not same for all the sequences.  
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In our current study we have considered Block 
Interleaver, which is a variant of periodic interleaver. In a 
block interleaver the flow of symbols is divided in 
sequence of K symbols. Each of the sequence is then 
placed into a matrix form of size n m , where n  represents 
the number of rows and is called interleaving depth and m  
represents the columns and referred as block size. A sample 
sequence of symbols in a 4 4 matrix is represented in 
figure 3. 

Symbols are read into the matrix by rows and read out 
by columns. For continuous interleaving two matrices are 
required. Symbols are written into one matrix whilst they 
are read out of the other. This clearly leads to the 
considerable delay in the interleaver, with output of symbol 
from the buffer matrix being delayed until all symbols have 
been read in. 

 

 
Fig. 3 n m Block Interleaver 

 
The rearrangement of symbols by the interleaver is such 

that if m or fewer symbols are lost from a block, each 
original group of n symbols after deinterleaving will 
contain at most one loss. Sample codeword sequence along 
with random burst error is demonstrated in the figure 4. 

 

Fig. 4 Block Interleaver and De-interleaver 

 
It can be noticed that the grey colored symbols are the 

random burst errors, which are expected to occur in the 
communication channel. When the de-interleaving 
technique is applied on the above sequence the burst errors 
are distributed in such a way that it contains at most one 
packet error. 

 The burst error A of length B will be converted in 

smaller burst of length
B

n
. In ideal case, when n B we are 

able to convert the burst in an equivalent number of 
isolated losses spaced of m or 1m  symbols. Therefore, 
increasing n and m , the capacity of converting burst into 
isolated losses increases. 

Figure 5 compares the symbol error rates for different 
burst error size with interleaving against the traditional 
communication protocol. 

 

 

Fig. 5 Trial results with and without Interleaving 

 
Error rates when compared for communication channel 

with and without interleaving clearly indicates that the QoS 
in terms of error detection, correction and retransmission of 
erroneous packets can be optimized using simple and 
efficient FEC algorithms.   

 
The interleaving technique can be applied at different 

levels, which range from the bit/byte to an entire frame of a 
video stream. We decided to work at packet level as the 
losses on the internet majorly happen at packet level and 
considering the flexibility of internet protocol, it is not 
fixed to any particular technology.  

Generally, the interleaver follows a relationship from its 

input kx  to it output kx of 

 

( )k kx x                                                                23  

 
Where ( )k is the function that describes the mapping of 

interleaver output time indices to interleaver input time 
indices. 

Because of the periodicity, 
 

( ) ( )k L k L                                                      24  

 
The interleaving depth ‘J’ can be mathematically defined 

using the function   as  
 

1 1

0...... 1

( ) ( 1)min
k L

J k k  

 

                                25  

 
If the interleaving depth is large then the burst errors will 

be treated as independent error at the de-interleaver output. 
As the interleaving depth increases the error model 
transforms itself to memoryless error model. 
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V. EFFECT OF SYMBOL INTERLEAVING 

If the code is interleaved to degree ' 'L , then L code 
words are grouped together and the symbols are transmitted 
in an order such that the thJ  transmitted symbol belongs to 
code word i . 

 

0 1i L                                                                 26  

Where (mod )J i L  

Without interleaving ( 1)L  , the transitional 

probabilities associated with the transmission of two 
consecutive symbols in a particular codeword are given by 
equation 2. 

When the codeword is interleaved to degree 1L  , two 
consecutive symbols of a codeword are spaced apart by 
L symbols times.  

Then the corresponding transitional probability for these 
two symbols is given by the matrix LP . For a model 
interleaved to degree L , the transition probability matrix 
equals the transition probability matrix for the un-
interleaved model given by Equation 22 with  replaced 

by L . 

 

(1 )(1 ) (1 )

(1 )(1 ) 1 (1 )(1 )

L L
L

L L

p p
P

p p

 
 

   
  

     
                27  

 

The results say that interleaving to degree ' 'L  has the 
effect of raising the correlation co-efficient of the channel 
to the thL power [8]. The crossover probability for this 
interleaving is given by equation 20 and equation 21 as 
follows: 

 

(1 )L L
bbp p p                                                      28  

 
(1 )L L

ggp p p                                                    29  
 
It is evident that as L  ; L

bbp p  and 1L
ggp  . 

The bit error remains unaltered. The burst errors are 
distributed in such a way that it contains at most one packet 
error. This will result in designing a simple error detection 
and correction algorithms. 

VI. RESULTS AND DISCUSSIONS 

We have performed series of experiment trials with the 
parameter values listed in the table 1. The parameter values 
used for the experiments are derived from the equations 
discussed in the early part of this paper.   

Consider the one-step transition probability matrix for 
the two state Gilberts model from equation 3, 
where 0.7ggp  , 0.4bbp  ,1 0.3ggp   and1 0.6bbp  .  

Using the above values form one-step transition 
probability matrix in equations 10 and 11, we get the 
stationary state probabilities 0 and 1 as  

 

0

(0.6)
0.666

(0.9)
                                                      30  

 

1

(0.3)
0.333

(0.9)
                                                        31  

 
Now the correlation from equation 19 will be  
 

1 0.4 0.7 1 0.1bb ggp p                                       32  

 
 Now all the resultant values from equations 30, 31, 32 

along with the static trial values are tabulated in the table 1. 
 

TABLE I 
PARAMETERS USED FOR THE EXPEREMENT TRIALS 

Parameter Values 

InterleavingBlockSize  [12,16]  

InterleavingDepth  [3,4]  

( )b Loss  [0.333]  

( )Correlation  [0.1]  

Trials  [12]  

Protocols  [ , , ]udp tcp rtp  

PayloadSize  [512]  

 
 

 Figure 6 demonstrates the burst error randomization for 
different values of interleaving depth having the same loss 
probability and correlation factor. Increasing the correlation 
factor results in higher error bursts which intern results in 
more effective interleaving process. Also it can be noticed 
that increasing the interleaving depth, the desired 
probability converge towards a particular value. Any 
further increase in interleaving depth beyond this point will 
be similar to the channel with no memory and provides no 
additional benefits. 

 
 

 

Fig. 6 Simulation result obtained for different values of interleaving depth 
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VII. SUMMARY 

In this paper, we studied the evaluation of burst errors in 
symbol transmission by modeling the communication 
channel. Gilbert’s model which is the first order markov 
chain model is used to study the packet loss process.  The 
accuracy of using Gilbert’s error model was compared and 
justified against the analytical results. Concept of symbol 
interleaving was introduced to uniformly randomizing the 
burst errors to independent error. Performance of different 
symbol codes was verified to see the effect of interleaving. 
Experiment confirms that increasing the correlation factor 
results in higher burstiness. Simultaneously increasing the 
interleaving depth, the desired probability converges 
towards a particular value and any further increase provides 
no additional benefits. We have also demonstrated that the 
error rates when compared for communication channel with 
and without interleaving clearly indicates that the QoS in 
terms of error detection, correction and retransmission of 
erroneous packets can be optimized using simple and 
efficient FEC algorithms.   
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